The Quantum Simulation and Data Science Lab have experience in developing and using ab initio based methods and scientific software codes for quantum materials modelling and atomistic simulations in response to external stimuli such as light, and electric/magnetic fields. Simulations provide valuable new insights into the chemical and physical process and help us to discover new materials for renewable and sustainable energy. The lab seeks to advance quantum materials modelling and atomistic simulations by exploiting emerging technologies in high-performance computing (HPC), data science (artificial intelligence and machine learning), and/or quantum computers.

 

Members

Dr. Hemanadhan Myneni
Rannsóknasérfræðingur (Research Specialist / Research Assistant Professor)
Faculty of Industrial Engineering, Mechanical Engineering and Computer Science
e-mail : myneni@hi.is

Aðsetur
Gróska / Gr-316
Bjargargata 1, 102 Reykjavík, Iceland.

Website
https://sites.google.com/view/hemanadhan-myneni/home
https://english.hi.is/staff/myneni

 

Advisory Board Members

Prof. Mark E. Casida,
Professeur, chimie théorique,
Laboratoire de Spectrometrie, Interactions et Chimie Théorique (SITh),
Département de Chimie Molécularie (DCM, UMR CNRS/UJF 5250),
Institut de Chimie Moléculaire de Grenoble (ICMG, FR2607),
Université Grenoble-Alpes,
F-38041 Grenoble,
FRANCE
https://sites.google.com/site/markcasida/
e-mail : mark.casida@univ-grenoble-alpes.fr

 

Selected publications / pre-prints / manuscripts

H. Myneni, E.O. Jónsson, H. Jónsson*, and A.O. Dohn*, Polarizable force field for acetonitrile based on the single-center multipole expansion, The Journal of Physical Chemistry B (2022); https://doi.org/10.1021/acs.jpcb.2c04255

H. Myneni, D. Kedziera, J.W. Andzelm, J. Austad, E.I. Tellgren, T. Helgaker, and K. Szalewicz, Effects of strong magnetic fields on water from rigorous quantum calculations (Manuscript: https://www.dropbox.com/s/it6r1cbx8b1k3et/Hemanadhan_Krzysztof_Water1.pdf?dl=0)

K. Trepte, S. Schwalbe, S. Liebing, W.T. Schulze, J. Kortus, H. Myneni, A.V. Ivanov, and S. Lehtola, Chemical bonding theories as guides for self-interaction corrected solutions: multiple local minima and symmetry breaking, The Journal of Chemical Physics 155, 224109 (2021); https://doi.org/10.1063/5.0071796

S. Jana, H. Myneni, S. Śmiga, L.A. Constantin, and P. Samal, Benchmark test of a dispersion corrected revised Tao–Mo semilocal functional for thermochemistry, kinetics, and noncovalent interactions of molecules and solids, The Journal of Chemical Physics 155, 114102 (2021); https://doi.org/10.1063/5.0060538

A. Patra, S. Jana, H. Myneni, and P. Samal, Laplacian free and asymptotic corrected semilocal exchange potential applied to the band gap of solids, Physical Chemistry Chemical Physics 21, 19639 (2019); https://doi.org/10.1039/C9CP03356D

C. Shahi, P. Bhattarai, K. Wagle, B. Santra, S. Schwalbe, T. Hahn, J. Kortus, K.A. Jackson, J.E. Peralta, K. Trepte, S. Lehtola, N.K. Nepal, H. Myneni, B. Neupane, S. Adhikari, A. Ruzsinszky, Y. Yamamoto, T. Baruah, R.R. Zope, and J.P. Perdew, Stretched or noded orbital densities and self-interaction correction in density functional theory, The Journal of Chemical Physics 150, 174102 (2019); https://doi.org/10.1063/1.5087065

S. Jana, A. Patra, L.A. Constantin, H. Myneni, and P. Samal, Long-range screened hybrid functional theory satisfying the local density linear response, Physical Review A 99, 042515 (2019); https://doi.org/10.1103/PhysRevA.99.042515

S. Jana, B. Patra, H. Myneni, and P. Samal, On the many-electron self-interaction error of the semilocal exchange hole based meta-GGA level range-separated hybrid with the B88 hybrids, Chemical Physics Letters 713, 1 (2018); https://doi.org/10.1016/j.cplett.2018.10.007

H. Myneni and M.E. Casida, On the calculation of ∆<Ŝ^2>_i for electronic excitations in time-dependent density-functional theory, Computer Physics Communications 213, 72 (2017); http://dx.doi.org/10.1016/j.cpc.2016.12.011

P. Singh, M.K. Harbola, M. Hemanadhan (H. Myneni), A. Mookerjee, and D.D. Johnson, Better band gaps with asymptotically corrected local exchange potentials, Physical Review B 93, 085204 (2016); http://dx.doi.org/10.1103/PhysRevB.93.085204